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Measurement of Nonplanar Dielectric
Samples Using an Open Resonator

W.F. P. CHAN anp BARRY CHAMBERS

Abstract — Conventional microwave methods for measuring permittivity
often utilize samples in flat sheet form. In practice, however, it is some-
times desirable to measure samples having curved surfaces, for example,
parts of lenses or small radomes. This paper describes an open resonator
technique for achieving this and compares measurements made at 11.6
GHz on samples of polymethyl methacrylate in both curved and flat sheet
form.

I. INTRODUCTION

PROBLEM OF continuing interest is that of mea-

suring the spatial variations in dielectric constant
and loss tangent within a dielectric object of complex
shape, such as a lens or'a missile radome, especially at high
temperatures. Most techniques employed previously for
this type of measurement have been destructive in that
samples of material have had to be removed from the
object under investigation and carefully machined before
being measured in a waveguide system. The samples thus
measured are flat, but for a nondestructive measurement,
in situ samples are necessarily curved and thus an open
resonator technique, rather than a waveguide one, appears
to be more suitable. ,

The open resonator has been shown previously to provide
an accurate and convenient too] for the measurement of
the complex permittivity of dielectric materials in flat sheet
form [1]-[6], and Cullen and Yu [1] were the first to use
Gaussian beam theory to analyze such a system. Normally,
measurements are made with the sample located centrally
within the resonator so as to match the wavefronts ap-
proximately to the sample surfaces. Perturbation theory is
then used to compensate for the deviation of the sample
geometry from the ideal biconvex geometry required. Since
this deviation is usually small, experimental errors of less
than 1 percent for relative permittivity and 10 percent for
loss tangent are typical of those which have been reported
for various flat samples.

In an earlier paper [7], we presented the results of a
study into the measurement of biconcave dielectric samp-
les using an open resonator and examined the applicability
of the perturbation theory in these cases. More recently, by
using arguments similar to those employed by Cullen and
Yu [1], we have developed a new technique for the
measurement of convex—concave dielectric samples, and
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Fig. 1. An open resonator formed by a pair of spherical mirrors. -----
radii of curvature of the wavefronts. ///// shape of the Gaussian
beam. ‘

preliminary results were reported in [8]. In the new
measurement configuration, convex—concave samples are
measured at off-center positions inside the open resonator
where the wavefronts are curved and therefore similar in
form to the sample surfaces. By assuming that the latter
are coincident with the wavefronts, the field equations
applied at the air-dielectric interfaces can be simplified.
At resonance, the wave impedances on either side of the
two curved air—dielectric interfaces can be equated and
two transcendental equations, one for each air—dielectric
interface, can be obtained from which to calculate the
relative permittivity. When this has been determined, the
loss tangent can be obtained by calculating the difference
in energy losses between the unloaded and loaded resona-
tors.

A comprehensive experimental study of the new
measurement configuration has been completed and results
for polymethyl methacrylate (perspex) samples measured
at 11.6 GHz are reported, together with a discussion of
experimental errors.

1I. THEORY

An open resonator formed by a pair of identical spheri-
cal mirrors, as shown in Fig. 1, supports a complete and
orthogonal set of resonance modes. In practice, however,
due to the diffraction losses caused by the limited mirror
aperture, only the fundamental and a few low-loss higher
order modes actually exist. In the analysis which follows,
only the fundamental mode of resonance is considered.

his mode can be described in terms of a Gaussian beam
which propagates between the mirrors to form a standing
wave pattern. The beam has its minimum width at the
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Fig. 2. New measurement configuration.
center of the resonator and expands as it propagdtes away  as
from the center. The radius of curvature of the wavefronts A 2 Ky
e e . IWOI —r . r
decreases from infinity at the center of the resonator to E, = exp —|sin| kz—®, + — +a (4)
that of the mirrors at their surfaces. Following Kogelnik wy wi 2R,
and Li [9], the electromagnetic field of a Gaussian beam is 4 2 2
iven by the following equations: _ Ao r ks —® + 2 (5)
grven by : W= eXD 5| cosi kz — @, TR T
o1 wi 1
W, —r? kr? . . . .
E = —ﬁexp ( e ) exp ( kz —® + — (1) where the beam has its minimum width of wy, at z=0, 4,
4 w 2R is an amplitude factor, and w, R, and @, are defined by
2 2 2 ) 232
W, —r kr wl(z)~wm[1+(2z/kwm) ]
H = —¢x explkz—d+ — 2
Y Zgw p(wz)p(z 2R @

where w, is the minimum width of the beam, k is the
free-space phase constant, r is the radius, Z, is the
free-space wave impedance. The beamwidth w, radius of
curvature of the wavefront R, and the extra phase shift ®
are defined by

2

w2

(2) =wg[1+ (22 /kw2)’]
R(z)=z[1+(kw02/22)2]

(3)

As shown here, the electromagnetic field is assumed to be
linearly polarized. This assumption holds as long as
(kwy) ™2 < 1.

Since the radius of curvature of the wavefronts varies
with position along the longitudinal axis of the resonator,
accurate measurements on convex—concave samples should
be possible by placing them nearer to one of the mirrors,
where the radii of curvature of the sample surfaces are
similar to those of the wavefronts. When, for example,
such a sample is located nearer to the right-hand mirror, as
shown in Fig. 2, the system can be envisaged as being
comprised of four regions, separated by three constant-
phase surfaces. These are the plane surface SA, where the
beamwidth is a minimum, and the two air—dielectric
interfaces SB and SC. In region 1, the field can be written

®(z) =tan ' (2z/kwd).

R(z)= z[l-i—(kwozl/Zz)z]
®,(z) =tan"*(2z/kwd). (6)

a is a constant which can be found by applying suitable
boundary condition at the left-hand mirror surface. Here
the tangential electric field is zero, From (4),

a=+kD,—®,(D,)
and (4) and (5) become

=

kr
sm(kz - ‘I)l + E}I + kDe - (I)I(De)
exp(

cos(kz—d)

(7)

2
Ay —r
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As regions 1 and 2 are separated by a virtual surface SA,

the fields in each region can be expressed in a similar

form. The reason for separating the two regions becomes

obvious if a flat mirror is positioned at SA to replace the

left-hand spherical mirror, since this results in the

hemispherical open resonator, a configuration which is

frequently used for dielectric measurements. Hence,
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measurement of convex—concave samples can also be made
using a hemispherical open resonator and the theoretical
analysis of such a system will be slightly simpler than the
present one. In our analysis, however, regions 1 and 2 will
remain separated and the field in region 2 is therefore
given by (6), (8), and (9), where the subscript 1’s are
replaced by 2’s. In region 3, the beam is treated as a
portion of a virtual beam which has its minimum width wy,
at z = z;. The field can therefore be written as
AWy, -2\ nkr?
exp| — 5= |sin nkz — ®, 4 2%,

W3 3

E;= + 48) (10)

JA3Wgs —r? nkr?
H,= exp 5 |cos| nkz —®;+ —+8
21W3 Wy 2R3
(1)
where n is the refractive index of the dielectric, Z, is the
wave impedance of the dielectric, and 8 is a constant

determined by the sample position. The quantities w;, R,
and @, are defined by

o owi(2) =w023{1+[2(z-—z3)/nkw023]2}
Ry(z)= (z—zg){l+[nkw023/2(z~z3)]2}
®,(z) =tan~'[2(z — z,) /nkwd).

In region 4, the beam is again treated as a portion of
another virtual beam which has its minimum width wy, at
z = z,, and the field in this region can therefore be written

(12)

as
A Woq —r? kr?
= in|kz—®,+ —+vy| (13
x4 ” exp > sin| kz—®, IR, vl (13)
JA Woa —r? kr?
8= Zow, ex ( » )cos(kz—¢4+5—1€;+y (14)

where w,, R,, and ®, are defined by ‘
wi(z) = W024{1 + [2(Z - 24)/kW024]2}
Ry(z)=(z- 24){1+ [’kW024/2(Z - 24)]2}
@,(z) =tan"' [2(z - z,) /kwi]. (15)

vy is a constant which can be found by applying the
boundary condition at the right-hand mirror surface. Thus

y=—kD,+ ®,(D,) (16)
and (13) and (14) become
AW, —r?
E = a7 exp( 5 )

Wy Wy

kr?
sin | kz — @, + —— — kD, + @,(D,)

_r2
""( W )

kr?
-cos| kz — ®, + —— — kD, + ®,(D,)
IR,

(17)

JAWos
H_v4 =

Zyw,

. (18)
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Assuming the air-dielectric interfaces are coincident
with the wavefronts, then the wave impedances at these
surfaces can be matched. Firstly, the width and the radius
of curvature of the beam have to be identical on both sides
of the air—dielectric interfaces. Therefore, at SB,

wy(D,) =W3(Db)
R2(Db) = R3(Db) (19)
whereas at SC,

W3(Dt) =W4(Dt)

Ry(D,) = R,(D,). (20)

When the air-dielectric interfaces are coincident with the
wavefronts, the field equations applied at these interfaces
are simplified as the r-dependent terms can be ignored.
The wave impedances Z,;, and Z,,, looking to the left and
right of interface SB, can be written as

Z,,=— jZytan(kD,— ®,(D,)+ kD,~ ®,(D,)) (21)
Z,, == jZ, tan(nkD,— ®;(D,)+ B) (22)

whereas at SC, the corresponding wave impedances Z,
and Z,, are

Z,,=— jZ,tan(nkD,— ®,(D,)+ B) (23)
Z,,=— jZytan(kD, - ®,(D,)~ kD, + ®,(D,)). (24)

At resonance, the wave impedances on both sides of the
two curved air—dielectric interfaces should be equal. Hence
at SB, from (21) and (22),

jZytan (kD, — ®,(D,)+ kD,~ ®,(D,))
= jZ, tan(nkD, — ®,(D,)+B) (25)
tan (kD, — @,(D,)+ kD, — @,(D,))
= (1/n)tan(nkD, — ®,(D,)+B) (26)
whereas at SC, from (23) and (24),
jZ,tan(nkD,— ®,(D,)+ )
= jZ,tan(kD,— ®,(D,)— kD, + ®,(D,)) (27)
(1/n)tan(nkD, — ®4(D,)+ B)
= tan(kD,— ®,(D,)— kD, + ®,(D,)). (28)

When the relative permittivity e, has been determined
by €, = n?, the loss tangent of the sample can be obtained
by calculating the difference in energy losses between the
unloaded and the loaded resonators. The loss tangent is
therefore given by :

NE
o=l 7 0.

2 2 2 2
E l"dv+ | |[Eyl dv+e, | |Esl do+ | |Eyl dv
‘fml al’av+ [ 1B, [JEal do+ [ 1Eug

2
erLBIEx3I dv

(29)
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where v,, v,, v;, and v, are the volumes of the four
corresponding regions and Q, and Q, are the unloaded
and loaded Q factors, respectively.

When the radii of curvature of the sample surfaces are
different from those of the wavefronts, exact matching of
the wave impedances at the air-dielectric interfaces is
impossible unless higher order transverse modes are also
taken into account. However, small deviations of sample
geometry from the ideal can be compensated for by using
perturbation theory [1].

III. EXPERIMENTAL STUDY

As a test of the new theory, measurements were made at
11.6 GHz on polymethyl methacrylate disks having one
convex and one concave surface using an open resonator
with mirrors whose radius of curvature was 330 mm. The
experimental setup is shown in Fig. 3. In all, eight samples
with different radii of curvature were measured at several
different positions inside the resonator where the radii of
curvature of the samples were similar to the corresponding
wavefronts.

When a sample is placed inside an open resonator, the
system can be retuned by changing the resonant frequency.
This involves adjusting the sample to be perpendicular to
and aligned with the longitudinal axis of the resonator. In
our measurements, a specially designed sample holder was
used to provide the necessary adjustments. The changes in
resonant frequency and Q factor between the unloaded
and loaded resonators were measured and related to the
relative permittivity and loss tangent using the theory
discussed above.

The results are shown in Table I, together with the
corresponding results for the same material measured in
flat sheet form, using the same system. As can be seen, the
results for the two cases appear consistent and are in good
agreement. The slight differences between the results for
samples C1-C5 and C6-C8 is attributed to the fact that
each group of samples was cut from different sheets of
material. Apart from these slight differences, experimental
errors appear to be due mainly to uncertainties in the
measurement of sample position, sample geometry,
resonant frequency, and Q factor.

When making measurements, the position of the sample
inside the resonator needs to be known accurately, and this
has proved to be a source of difficulty. However, by
adjusting the position of the sample to produce either a
maximum or a minimum shift in resonant frequency, only
a rough estimation of the sample position is required. The
actual position can then be calculated using a technique
which seeks the optimum value of the relative permittivity,
expressed as either a maximum or a minimum calculated
value, as the position of the sample is allowed to vary
slightly about the estimated value. By using this technique,
the uncertainty in sample position was kept less than +0.5
mm, and this was calculated to give variations in relative
permittivity and loss tangent for all samples of less than
1.5 percent and 15 percent, respectively. Variations in the
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Fig. 3. Experimental setup.

TABLE 1
MEASUREMENT RESULTS FOR FLAT AND CONVEX—
CONCAVE SAMPLES

(a) results for convex-concave samples.

radius of measured in measured in

curvature aof high field region law field reqgjon
sample concave conve:i ralative loss relative lpss

Aumber surface surface permittivity tangent permittivity tapgent
[333 5.603m 3.787m 2.4628 ©.0070 2.613 0.00&4
c2 2.497m  2,06Zm 2,827 0.006% 2.4602 0.0068
c3 1.402m  1.257m 2,427 0.0069 2.594 0.006%
c4 0.874m  0.823m 2.429 0.0069 2.623 0.0063
€S 0.648m  0.&25m 2.4631 0.0070 2.632 0.0064

variations in 0.2% 1% 1.5% 3%

a) relative permittivity 1.9% — -

b) less tangent e Q% e
c& 0.488m 0.478m 2.590 0.0043 2.4617 0.0050
c7 0.384m  0.384m 2.582 0.00A1 2.621 0.0030
c8 0,330m__9,330m 2.581 0.0043 2.621 9.0057

variations in 0.3% S% 0.2% 13%

a) relative permittivity —— 1.5%

b} loss tangent

{b) results for flat samples.

measured in
iow field region

measured in
high field regicn

sample thickness relative loss relative loss

numbar of sample permittivity tangent permittivity tangent
F1 I.0lmm 2.611 0,0059 2.621 0,0062
F2 4.01mm 2.620 0.00480 2.617 0.0044
F3 J3.01mm 2.4617 0.0063 2.4621 0.00635
Fa S.97mm 2.4616 0. 00460 2.619 0.00463
FS 6. 78mm 2.617 G.00561 Z.613 0.0057
Fé 7.9%9mm 2.618 Q.00461 2,610 0.0061

variations in 0.3% 7% 0.4% 10%

a) relative permittivity - 0.4% ——

b) loss tangent 10%

Frequency: 11.59 GHz.
Material: polymethyl methacrylate (Perspex).
Radius of curvature of mirrors: 330 mm.

complex permittivity for sample C8 are shown in Table II.
As can be seen, variations are larger when samples were
measured in low field regions where the relative field
intensity at the air-dielectric interfaces was high. In our
measurements, the angular position of the sample could be
adjusted to better than +1° and the changes in resonant
frequency and Q factor due to the resulting slight variations
in sample aspect were found to be negligible.

Since most of the energy of the Gaussian beam is
concentrated near its longitudinal axis, as long as the
sample is large enough to intercept the latter, the trans-
verse dimensions of the sample are not critical. However,
the thickness of the samples still needs to be known
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TABLE II
VARIATIONS IN RELATIVE PERMITTIVITY AND L0Ss TANGENT DUE
TO UNCERTAINTY IN SAMPLE POSITION

measured in measured in
high field region low_ freld_reqion
relative loss relative lass
permittivity tangent permattaivaty tangent

sample
number

sample
pasition

c8 ~0, Smm
c8 original value
c8

+0.5mm
variations

2.6135
2.570
2.616

1.0%

0.0041
0.00434
0.0047

15%

2.596
2.624
2.596

1.2%

0.0065
0.0050
0.0057

14%

TABLE III
VARIATIONS IN RELATIVE PERMITTIVITY AND L0Oss TANGENT DUE
TO UNCERTAINTY IN SAMPLE THICKNESS

measured in
low field region
relative loss

measured 1n
high field region
relative loss

sample sample

number thickness permittivity tangent pgrmttivity tangent

c8 ~0.03mm 2.592 0.0044 2.642 0.0050

c8 S.87mm 2.590 0.0044 2.4624 0.0060

c8, +0.03mm 2.587 0.0044 2.4609 09,0040

variations Q.2% o% 1.4% 0%
accurately. In our repeated thickness measurements

(thickness at the center of the samples), due to difficulty in
alignment between the sample and the micrometer, a
measurement accuracy of +0.03 mm was observed. By
changing the assumed thickness in our analysis, variations
in relative permittivity were less than 0.2 percent and 1.5
percent when samples were measured in high and low field
regions of the resonator, respectively. However, variations
in loss tangent for samples measured in both high and low
field regions were small. Table III shows the variations in
relative permittivity and loss tangent due to assumed
variations in thickness.

Perturbation theory compensation has been applied to
the results to account for the deviations from the ideal
geometry of the convex—concave samples, but since these
were designed to match approximatety with the wavefronts,
the compensation is small. When, however, the sample
geometry is very different from the ideal, the errors are
expected to be large and dominated by those introduced
by the use of perturbation theory. These errors can be
minimized, as reported in [7], by locating the sample in a
high field region of the resonator standing wave pattern
while leaving the air—dielectric interfaces in relatively low
field regions. Hence refraction of the electric field can be
minimized together with the errors. Alternatively, by using
mirrors whose radii of curvature are similar to those of the
sample surfaces, wavefronts with similar radii of curvature
can be produced to match the sample geometry.

Errors in relative permittivity and loss tangent arising
from uncertainties in the measured resonant frequency and
Q factor are typically within 1 percent and 5 percent,
respectively. After taking the above-mentioned factors into
account, the uncertainties in the relative permittivity and
loss tangent are expected to be within 3 percent and 20
percent, respectively. As can be seen from Table I, the
results obtained for samples measured in similar field
intensity regions appear to be consistent, but a relatively
large difference occurs between those measured in high
and low field regions. When the results for samples
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measured in both regions are combined together, experi-
mental errors are 1.5 percent and 35 percent for relative
permittivity and loss tangent, respectively. As the errors
appear to increase when the radius of curvature is small,
this is thought to be due to incomplete field matching at

‘the air—dielectric interfaces, since the width of the beam

has only been matched at the center point and not across
the whole interface.

IV. Discussion

The new measurement technique has certain advantages
over that employed for flat sheet samples. As the sample is
not required to be positioned at a particular point within
the resonator, the resonant frequency can be varied by
moving the sample along the longitudinal axis. Measure-
ment of the complex permittivity over a range of
frequencies should therefore be possible although the
frequency range may not be extensive. However, by
measuring the sample at different positions along the
longitudinal axis using several different axial order modes,
the frequency range can be greatly extended.

Since the new technique is capable of measuring a
sample positioned close to one of the mirrors, a symmetri-
cal resonator is not always necessary. This is a particularly
useful feature when access around the object under
investigation is limited. Thus a nonsymmetrical resonator
formed from a flat mirror and a concave mirror, or an
even more compact configuration of a convex mirror and a
concave mirror could be used.

The new technique does have one disadvantage, how-
ever. Normally, for the measurement of flat samples, only
the thickness of the latter need be known accurately. When
using the new configuration, however, a fuller description
of the sample geometry is required; thus additional errors
can arise. ‘

V. CoNCLUSIONS

A new technique for the measurement of
convex-concave dielectric samples using an open resona-
tor has been developed which involves positioning a sample
such that its surfaces coincide approximately with particu-
lar wavefronts within the resonator. Measurements have
been made at 11.6 GHz on polymethy! methacrylate disk
samples with radii of curvature as small as 330 mm. The
results obtained appear consistent and are in good agree-
ment with those for the same material measured in flat
sheet form.

When the sample surfaces are approximately coincident
with the wavefronts, experimental errors are due mainly to
uncertainties in the measurement of sample geometry,
sample position, resonant frequency, and Q factor.
Experimental errors within'1.5 percent for relative permit-
tivity and 35 percent for loss tangent have been obtained.
These are thought in part to be due to imperfect field
matching at the air—dielectric interfaces.
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