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Measurement of Nonplanar Dielectric
Samples Using an Open Resonator

W. F. P. CHAN AND BARRY CHAMBERS

Ab.rtract —Conventional microwave methods for measuriug permittivity

often utilize samples in flat sheet form. In practice, however, it is some-

times desirable to measure samples having curved surfaces, for example,

parts of lenses or small radomes. This paper describes an open resonator

technique for achieving this and compares measurements made at 11.6

GHz on samples of polymethyl methacryI@e in both curved and flat sheet

form.

I. INTRODUCTION

A PROBLEM OF continuing interest is that of mea-

suring the spatial variations in dielectric constant

and loss tangent within a dielectric object of complex

shape, such as a lens or a missile radome, especially at high

temperatures. Most techniques employed previously for

this type of measurement have been destructive in that

samples of material have had to be removed from the

object under investigation and carefully machined before

being measured in a waveguide system. The samples thus

measured are flat, but for a nondestructive measurement,

in situ samples are necessarily curved and thus an open

resonator technique, rather than a waveguide one, appe~s

to be more suitable.

The open resonator has been shown previously to provide

an accurate and convenient tool for the measurement of

the complex permittivity of dielectric materials in flat sheet

form [1]–[6], and Cullen and Yu [1] were the first to use

Gaussian beam theory to analyze such a system. Normally,

measurements are made with the sample located centrally

within the resonator so as to match the wavefronts ap-

proximately to the sample surfaces. Perturbation theory is

then used to compensate for the deviation of the sample

geometry from the ideal biconvex geometry required. Since

this deviation is usually small, experimental errors of less

than 1 percent for relative permittivity and 10 percent for

loss tangent are typical of those which have been reported

for various flat samples.

In an earlier paper [7], we presented the results of a

study into the measurement of biconcave dielectric samp-

les using an open resonator and examined the applicability

of the perturbation theory in these cases. More recently, by

using arguments similar to those employed by Cullen and

Yu [1], we have developed a new technique for the

measurement of convex–concave dielectric samples, and
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Fig. 1. An open resonator formed by a pair of spherical mirrors. -----
radii of curvature of the wavefronts. //,/// shape of the Gaussian
beam.

preliminary results were reported in [8]. In the new

measurement configuration, convex–concave samples are

measured at off-center positions inside the open resonator

where the wavefronts are curved and therefore similar in

form to the sample surfaces. By assuming that the latter

are coincident with the wavefronts, the field equations

applied at the air-dielectric interfaces can be simplified.

At resonance, the wave impedances on either side of the

two curved air–dielectric interfaces can be equated and

two transcendental equations, one for each air–dielectric

interface, can be obtained from which to calculate the

relative permittivity. When this has been determined, the

loss tan gent can be obtained by calculating the difference

in energy losses between the unloaded and loaded resona-

tors.

A comprehensive experimental study of the new

measurement configuration has been completed and results

for polymethyl methacrylate (perspex) samples measured

at 11.6 GHz are reported, together with a discussion of

experimental errors.

II. THEORY

An open resonator formed by a pair of identical spheri-

cal mirrors, as shown in Fig. 1, supports a complete and

orthogonal set of resonance modes. In practice, however,

due to the diffraction losses caused by the limited mirror

aperture, only the fundamental and a few low-loss higher

order modes actually exist. In the analysis which follows,
only the fundamental mode of resonance is considered.

This mode can be described in terms of a Gaussian beam

which propagates between the mirrors to form a standing

wave pattern. The beam has its minimum width at the

0018-9480/87 /1200-1429$01 .00 01987 IIEEE



1430 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 12, DECEMBER 1987

r

J
i

region 1 region

1
:t 4
$fl SB SC

region ; region
2 A

I
3

t
Db ~t

k
De D]

spherical convex-concave spherical

mirror sample mlrrcr I
Fig. 2. New measurement configuration.

center of the resonator and expands asit propagates away

from the center. The radius of curvature of the wavefronts

decreases from infinity at the center of the resonator to

that of the mirrors at their surfaces. Following Kogelnik

and Li [9], the electromagnetic field of a Gaussian beam is

given by the following equations:

E,=

Iiy =

where WO is

W. ()(—r2
— exp —

w’
exp kz –

w
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–Q+=

)
(2)

the beam, k is the

free-space phase constant, r is the radius, Zn is the

free-space wave impedance. The beamwidth w, ~adius of

curvature of the wavefront R, and the extra phase shift @

are defined by

W2(Z) = w#[l+(2z/kw; )2]

R(z) =z[l+(kw;\2z)2]

Q(z) = tan-1 (2z/kw~). (3)

As shown here, the electromagnetic field is assumed to be

linearly polarized. This assumption holds as long as

(kwo)-z<<l.
Since the radius of curvature of the wavefronts varies

with position along the longitudinal axis of the resonator,

accurate measurements on convex–concave samples should

be possible by placing them nearer to one of the mirrors,

where the radii of curvature of the sample surfaces are

similar to those of the wavefronts. When, for example,

such a sample is located nearer to the right-hand mirror, as

shown in Fig. 2, the system can be envisaged as being

comprised of four regions, separated by three constant-

phase surfaces. These are the plane surface SA, where the

beamwidth is a minimum, and the two air–dielectric

interfaces SB and SC. In region 1, the field can be written

as

Al Wol

(H

—r2 kr 2
Exl = ——— exp — sin kz–@l+—

2R1 ‘a
1

(4)
WI w;

jA1 wol

(1(

— r2 kr 2
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where the beam has its minimum width of WOIat z = O, Al

is an amplitude factor, and Wl, RI, and @l are defined by

W:(Z) = W:l[l + (2z/’kw&)2]

R,(z) = z[l+(kw&’2z)2]

@l(z) = tan-l (2z/kw&). (6)

a is a constant which can be found by applying suitable

boundary condition at the left-hand mirror surface. Here

the tangential electric field is zero, From (4),

a=+kD, –Q1(D,) (7)

and (4) and (5) become

Al WO1

H

—r2
EV1 = — exp —

WI w;

jA1 Wol
H\,l = —

Zowl

As regions 1

the fields in

form. The reason for separating the ~wo regions beeomes

obvious if a flat mirror is positioned at SA to replace the

left-hand spherical mirror, since this results in the

hemispherical open resonator, a configuration which is

frequently used for dielectric measurements. Hence,

H—r2
exp —

(

Cos :-@,+ ‘r

1

;+kD, –@l(D, ) . (9)
1

and 2 are separated by a virtual surface SA,

each region can be expressed in a similar
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measurement of convex–concave samples can alsh be made

using a hemispherical open resonator and the theoretical

analysis of such a system will be slightly simpler than the

present one. In our analysis, however, regions 1 and 2 will

remain separated and the field in region 2 is therefore

given by (6), (8), and (9), where the subscript 1’s are

replaced by 2’s. In region 3, the beam is treated as a

portion of a virtual beam which has its minimum width W03

at z = Z3. The field can therefore be written as

mA3woq – J’2 nkr 2
Exz = — exp — sin nkz – @3+

)

~ + @ (lo)
Wj w: 3

jA ~wo~
HY3 = —

(1(

nkr 2

Z,W3 “p $
cos nkz – OJ + —+p

2R3 )
(11)

where n is the refractive index of the dielectric, ZI is the

wave impedance of the dielectric, and ~ is a constant
determined by the sample position. The quantities W3, R ~,

and Q3 are defined by

\ (
2]2}

W:(Z) = W;3 1 + [2(z - z3)/nkw(J~

R~(z) = (z-z, )(l+(nkw&’2(z -z,)]2) (12)

@~(z) = tan-l [2(z –z3)/nkw&].

In region 4, the beam is again treated as a portion of

another virtual beam which has its minimum width Ww at

z = Z4, and the field in this region can therefore be written

as

mA4W04 -r2 kr 2
Exd = — exp — sin kz–@4+-——
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where W4, R4, and Qd are defined by

W;(Z) = W:4(1+ [2(z – z&’kw&]2}

R,(z) = (z-z4j(l +[kw&/2(z-z4)]2]

@d(z) = tan-l [2(z– z4)/kw&]. (15)

y is a constant which can be found by applying the

boundary condition at the right-hand mirror surface. Thus

y=–kDl+@4(D{) (16)

and (13) and (14) become

(1A4W04 – r2
Exd ==— exp —

WJ w:

Assuming the air–dielectric interfaces are coincident

with the wavefronts, then the wave impedances at these

surfaces can be matched. Firstly, the width and the radius

of curvature of the beam have to be identical on both sides

of the air–dielectric interfaces. Therefore, at SB,

W2(DJ =w3(Db)

R2(%) = R3(%) (19)

whereas at SC,

w,(~,) = w,(~t)

R3(Dt) = R4(D,). (20)

When the air-dielectric interfaces are coincident with the

wavefronts, the field equations applied at these interfaces

are simplified as the r-dependent terms can be ignored.

The wave impedances Z~~ and Z~r, looking to the left and

right of interface SB, can be written as

Z~l = – jZO tan(kD, – @2(D~) + kD, - @2(De)) (21)

Zb, =– jZltan(nkDb -Q,(D~)+@) (22)

whereas at SC., the corresponding wave impedances ZCl

and Z.. are

Z,l= – jZ1 tan(nkDt– @3( D,)+~) (23)

Z,, = – jZOtan(kD, – @,(D,)– kD1+ @4( D1)). (24)

At resonance, the wave impedances on both sides of the

two curved air–dielectric interfaces should be equal. Hence

at SB, from (21) and (22),

jZOtan(kD, – @2(D,)+ kD<- @2(D,))

= jZl tan(nkD~ – @~(Db)+j3) (25)

tan(kl~~ – @2( D6)+kD, – @2(D.))

= (l/n) tan(nkD, –@,(D,)+~) (26)

whereas at SC, from (23) and (24),

jzl tan(nkD, – @s(D,)+13)

= jZOtan(kD, – @,( D,) – kDl + @q(D,)) (27)

(1/n) tan(nkD, - ~,(D,)+~)

= tan(kD, – @4(D,)– kDl+@.(Dl)). (28)

When the relative permittivity t, has been determined

by c,= n 2, the loss tangent of the sample can be obtained

by calculating the difference in energy losses between the

unloaded’ and the loaded resonators. The loss tangent is

therefore given by

()1 1.

( )
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where v ~, v2, U3, and V4 are the volumes of the four

corresponding regions and Q, and QI are the unloaded

and loaded Q factors, respectively.

When the radii of curvature of the sample surfaces are

different from those of the wavefronts, exact matching of

the wave impedances at the air–dielectric interfaces is

impossible unless higher order transverse modes are also

taken into account. However, small deviations of sample

geometry from the ideal can be compensated for by using

perturbation theory [1].

111. EXPERIMENTAL STUDY

As a test of the new theory, measurements were made at

11.6 GHz on polymethyl methacrylate disks having one

convex and one concave surface using an open resonator

with mirrors whose radius of curvature was 330 mm. The

experimental setup is shown in Fig. 3. In all, eight samples

with different radii of curvature were measured at several

different positions inside the resonator where the radii of

curvature of the samples were similar to the corresponding

wavefronts.

When a sample is placed inside an open resonator, the

system can be retuned by changing the resonant frequency.

This involves adjusting the sample to be perpendicular to

and aligned with the longitudinal axis of the resonator. In

our measurements, a specially designed sample holder was

used to provide the necessary adjustments. The changes in

resonant frequency and Q factor between the unloaded

and loaded resonators were measured and related to the

relative permittivity and loss tangent using the theory

discussed above.

The results are shown in Table I, together with the

corresponding results for the same material measured in

flat sheet form, using the same system. As can be seen, the

results for the two cases appear consistent and are in good

agreement. The slight differences between the results for

samples Cl –C5 and C6–C8 is attributed to the fact that

each group of samples was cut from different sheets of

material. Apart from these slight differences, experimental

errors appear to be due mainly to uncertainties in the

measurement of sample position, sample geometry,

resonant frequency, and Q factor.

When making measurements, the position of the sample

inside the resonator needs to be known accurately, and this
has proved to be a source of difficulty. However, by

adjusting the position of the sample to produce either a

maximum or a minimum shift in resonant frequency, only

a rough estimation of the sample position is required. The

actual position can then be calculated using a technique

which seeks the optimum value of the relative permittivity,

expressed as either a maximum or a minimum calculated

value, as the position of the sample is allowed to vary

slightly about the estimated value. By using this technique,

the uncertainty in sample position was kept less than ~ 0.5

mm, and this was calculated to give variations in relative

permittivity and loss tangent for all samples of less than

1.5 percent and 15 percent, respectively. Variations in the

Fig. 3. Experimental setup.

TABLE I
MEASUREMENT RESULTS FOR FLAT AND CONVEX–

CONCAVE SAMPLES

(a) res”l ts f 0, Convex–cc,ncave Samol es.

c1 5. hrcfm 3. 797m 2. b?e 0.0070 2.613 0.0066
C2 2. 4?7m 2. 0673n 2.627 0.0069 2.602 0. 006.s
C3 1. .lOam 1. 257m 2.627 0.0067 2.594 0.0063
C4 0. S174m 0. R23m 2. &z’? 0. Ooh’? 2.623 0. 006s
C!i 0. 64% 0. 62% Z. L.31 0.0070 2.632 0. 00’S4

var. atio. s in O.YL lx i.s~ Sx
a) relative perm. ttivity ~ . y~ ––-––___–_–

b) loss tangent ‘?% –-––-––--––-

Cfa 0. 488m 0. 47em 2. s’?!> 0.0043 2.617 0.0050
c? o.3e4m o.ze4m ~, SQ2 0.0041
C8

2.621 0.0050
0. 330m O. 330rn 2.581 0.0043 Z.A21 0.0057

variations in 0.3X TL O.zrr 1Tk
a) relative permittivity __. _.. ——-—— * .>% -–-––_––__–

b) 10SS tangent –-––-–––..–. ~y~ ___– ________

measured i n measured i.

F1 3. O1nml 2.611 0.,005? 2.621 0. 00&2
F2 4.olnlm 2.620 0.0060 2..517 0. 00M
F3 5. O1mm 2.61? 0.0063 2.621 0.0065
F4 5.77mm 2.616 0.00.40 2.619 0.0043
F3 6. ?Emm 2.617 O.cxlbl 2.613 0.0059

~ 7.9%m 2.418 .0041 2.610 0.0061

var. atin. s in 0.3% Ti O.ri 1Oz

) relati~e .ermittivltv -----.---—— 0. WA —-–—–—––––-.)
b) 10=. tangent --–--––-––––– ,Oz -----------

Frequency: 11.59 GHz.

Material: polymethyl methacrylate (Perspex)

Radius of curvature of mirrors: 330 mm.

complex permittivity for sample C8 are shown in Table II.

As can be seen, variations are larger when samples were

measured in low field regions where the relative field

intensity at the air–dielectric interfaces was high. In our

measurements, the angular position of the sample could be

adjusted to better than +10 and the changes in resonant

frequency and Q factor due to the resulting slight variations

in sample aspect were found to be negligible.

Since most of the energy of the Gaussian beam is

concentrated near its longitudinal axis, as long as the

sample is large enough to intercept the latter, the trans-
verse dimensions of the sample are not critical. However,

the thickness of the samples still needs to be known
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TABLE II measured in both regions are combined together, experi-
VARIATIONS IN RELATIVE PERMITTIWTY AND Loss TANGENT DUE mental errors are 1,5 percent and 35 percent for relative

TO UNCERTAINTY IN SAMPLE POSITION

permittivity and loss tangent, respectively. As the errors

m,easured 4. measured L n appea~ to increase when the radius of curvature is small,
hi.ah field reciion _ low field realm

Samp 1 e s.amp 1e relatlve 10ss relative 1055 this is thought to be due to incomplete field matching at
~ oO.sitiO” Derm,tti,v,+y t~naent ~erm,ttzv,tr ea.~ent

the air–dielectric interfaces, since the width of the beam
Ce -0. Sam! 2.615 0.0041 2.596 0.0065
Cs .ariq, nal value 2.590 0.0044 2. &24 0.0060 has on,lybeenmatchedat the center point and not across
C8 +0.smm 2.6i6 0.0047 2.596 0. 00s7

vari at , 0“s 1.IX 1W 1.2% 1WL the wh~ole interface.

TABLE III

VARIATIONS IN RELATIVE PERMITTIVITY AND Loss TANGENT DUE

TO UNCERTAINTY IN SAMPLE THICICNESS

measured 1. measured i“
hiqh field reclicm 1 -W field re.aio.

sample sample relatlve 105s relative 10ss

n~ thickness aermittivity tanae”t ~nuttxvltv tanoent

Ca -0. osmm 2.592 0.0044
C8 5. 87mm

2.642 0.0060
2.590 0.0044 2.624

~
0.0060

+0. O%lm .587 0.0044 2.605 0,0060
“a, 1 at 1ens 0.2% ox 1.4z 0%

accurately. In our repeated Ihickness measurements

(thickness at the center of the samples), due to difficulty in

alignment bet ween the sample and the micrometer, a

measurement accuracy of +0.03 mm was observed. By

changing the assumed thickness in our analysis, variations

in relative permittivity were less than 0.2 percent and 1.5

percent when samples were measured in high and low field

regions of the resonator, respectively. However, variations

in loss tangent for samples measured in both high and low

field regions were small. Table III shows the variations in

relative permittivity and loss tangent due to assumed

variations in thickness.

Perturbation theory compensation has been applied to

the results to account for the deviations from the ideal

geometry of the convex–concave samples,, but since these

were designed to match approximately with the wavefronts,

the compensation is small. When, however, the sample

geometry is very different from the ideal, the errors are

expected to be large and dominated by those introduced

by the use of perturbation theory. These errors can be

minimized, as reported in [7], by locating the sample in a

high field region of the resonator standing wave pattern

while leaving the air–dielectric interfaces in relatively low

field regions. Hence refraction of the electric field can be

minimized together with the errors. Alternatively, by using

mirrors whose radii of curvature are similar to those of the

sample surfaces, wavefronts with similar radii of curvature

can be produced to match the sample geometry.

Errors in relative permittivity and loss tangent arising

from uncertainties in the measured resonant frequency and

Q factor are typically within 1 percent and 5 percent,

respectively. After taking” the above-mentioned factors into’

account, the uncertainties in the relative permittivity and

loss tangent are expected to be within 3 percent and 20

percent, respectively. As can be seen from Table I, the

results obtained for samples measured in similar field

intensity regions appear to be consistent, lbut a relatively

large difference occurs between those measured in high

and low field regions. When the results for samples

IV. DISCUSSION

The new measurement technique has certain advantages

over that employed for flat sheet samples. As the sample is

not required to be positioned at a particular point within

the resonator, the resonant frequency can be varied by

moving the sample along the longitudinal axis. Measure-

ment of the complex permittivity over a range of

frequencies should therefore be possible although the

frequency range may not be extensive. However, by

measuring the sample at different positions along the

longitudinal axis using several different axial order modes,

the frequency range can be greatly extended.

Since the new technique is capable of measuring a

sample positioned close to one of the mirrors, a symmetri-

cal resonator is not always necessary. This is a particularly

useful feature when access around the object under

investigation is limited. Thus a nonsymmetrical resonator

formed from a flat mirror and a concave mirror, or an

even more compact configuration of a convex mirror and a

concave mirror could be used.

The new technique does have one disadvantage, how-

ever. Normally, for the measurement of flat samples, only

the thickness of the latter need be known accurately. When

using thle new configuration, however, a fuller description

of the sample geometry is required; thus additional errors

can arise.

V, CONCLUSIONS

A n~ew technique for the measurement of

convex– concave dielectric samples using an open resona-

tor has been developed which involves positioning a sample

such that its surfaces coincide approximately with particu-

lar wavefronts within the resonator. Measurements have

been malde at 11.6 GHz on polymethyl methacrylate disk

samples with radii of curvature as small as 330 mm. The

results obtained appear consistent and are in good agree-

ment with those for the same material measured in flat

sheet form.

When the sample surfaces are approximately coincident

with the wavefronts, experimental errors are due mainly to

uncertainties in the measurement of sample geometry,

sample position, resonant frequency, and Q factor.

Experimental errors within 1.5 percent for relative permit-

tivity and 35 percent for loss tangent have been obtained.

These are thought in part to be due to imperfect field

matching at the air–dielectric interfaces.
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